
175

Chapter 9

9.System Administration for Guaranteed-Rate I/O

Guaranteed-rate I/O, or GRIO for short, is a mechanism that enables a user application
to reserve part of a system’s I/O resources for its exclusive use. For example, it can be
used to enable “real-time” retrieval and storage of data streams. GRIO manages the
system resources among competing applications, so the actions of new processes do not
affect the performance of existing ones. GRIO can read and write only files on a real-time
subvolume of an XFS filesystem. To use GRIO, the subsystem eoe.sw.xfsrt must be
installed.

This chapter explains important guaranteed-rate I/O concepts, describes how to
configure a system for GRIO, and provides instructions for creating an XLV logical
volume for use with applications that use GRIO.

The major sections in this chapter are:

• “Guaranteed-Rate I/O Overview” on page 176

• “GRIO Guarantee Types” on page 178

• “GRIO System Components” on page 182

• “Hardware Configuration Requirements for GRIO” on page 183

• “Configuring a System for GRIO” on page 185

• “Additional Procedures for GRIO” on page 188

• “GRIO File Formats” on page 192

Note: By default, IRIX supports four GRIO streams (concurrent uses of GRIO). To
increase the number of streams to 40, you can purchase the High Performance
Guaranteed-Rate I/O—5-40 Streams software option. For even more streams, you can
purchase the High Performance Guaranteed-Rate I/O—Unlimited Streams software
option. See the grio Release Notes for information on purchasing these software options
and obtaining the required NetLS licenses. NetLS licenses for GRIO are installed in the
standard location, /var/nodelock.

176

Chapter 9: System Administration for Guaranteed-Rate I/O

Guaranteed-Rate I/O Overview

The guaranteed-rate I/O system (GRIO) allows applications to reserve specific I/O
bandwidth to and from the filesystem. Applications request guarantees by providing a
file descriptor, data rate, duration, and start time. The filesystem calculates the
performance available and, if the request is granted, guarantees that the requested level
of performance can be met for a given time. This frees programmers from having to
predict system I/O performance and is critical for media delivery systems such as
video-on-demand.

The GRIO mechanism is designed for use in an environment where many different
processes attempt to access scarce I/O resources simultaneously. GRIO provides a way
for applications to determine that resources are already fully utilized and attempts to
make further use would have a negative performance impact.

If the system is running a single application that needs access to all the system resources,
the GRIO mechanism does not need to be used. Since there is no competition, the
application gains nothing by reserving the resources before accessing them.

Guarantees can be hard or soft, a way of expressing the tradeoff between reliability and
performance. Hard guarantees deliver the requested performance, but with some
possibility of error in the data (due to the requirements for turning off disk drive
self-diagnostics and error-correction firmware). Soft guarantees allow the disk drive to
retry operations in the event of an error, but this can possibly result in missing the rate
guarantee. Hard guarantees place greater restrictions on the system hardware
configuration.

Applications negotiate with the system to make a GRIO reservation, an agreement by the
system to provide a portion of the bandwidth of a system resource for a period of time.
The system resources supported by GRIO are files residing within real-time subvolumes
of XFS filesystems. A reservation can by transferred to any process and to any file on the
filesystem specified in the request.

A GRIO reservation associates a data rate with a filesystem. A data rate is defined as the
number of bytes per a fixed period of time (called the time quantum). The application
receives data from or transmits data to the filesystem starting at a specific time and
continuing for a specific period. For example, a reservation could be for 1.2 MB every 1.29
seconds, for the next three hours, to or from the filesystem on /dev/dsk/xlv/video1. In this
example, 1.29 seconds is the time quantum of the reservation.

Guaranteed-Rate I/O Overview

177

The application issues a reservation request to the system, which either accepts or rejects
the request. If the reservation is accepted, the application then associates the reservation
with a particular file. It can begin accessing the file at the reserved time, and it can expect
that it will receive the reserved number of bytes per time quantum throughout the time
of the reservation. If the system rejects the reservation, it returns the maximum amount
of bandwidth that can be reserved for the resource at the specified time. The application
can determine if the available bandwidth is sufficient for its needs and issue another
reservation request for the lower bandwidth, or it can schedule the reservation for a
different time. The GRIO reservation continues until it expires or an explicit
grio_unreserve_bw() or grio_remove_request() library call is made (for more
information, see the grio_unremove_bandwidth(3X) and grio_remove_request(3X)
reference pages). A GRIO reservation is also removed on the last close of a file currently
associated with a reservation.

If a process has a rate guarantee on a file, any reference by that process to that file uses
the rate guarantee, even if a different file descriptor is used. However, any other process
that accesses the same file does so without a guarantee or must obtain its own guarantee.
This is true even when the second process has inherited the file descriptor from the
process that obtained the guarantee.

Sharing file descriptors between processes in a process group is supported for files used
for GRIO, but the processes do not share the guarantee. If a process inherits an open file
descriptor from a parent process and wants to have a rate guarantee on the file, the
process must obtain another rate guarantee and associate it with the file descriptor.
Sharing file descriptors between processes inhibits the automatic removal of GRIO
reservations on the last close of a file associated with a rate reservation.

Four sizes are important to GRIO:

Optimal I/O size
Optimal I/O size is the size of the I/O operations that the system
actually issues to the disks. All the disks in the real-time subvolume of
an XLV volume must have the same optimal I/O size. Optional I/O
sizes of disks in real-time subvolumes of different XLV volumes can
differ. For more information see the sections “/etc/grio_config File
Format” and “/etc/grio_disks File Format” in this chapter.

178

Chapter 9: System Administration for Guaranteed-Rate I/O

XLV volume stripe unit size
The XLV volume stripe unit size is the amount of data written to a single
disk in the stripe. The XLV volume stripe unit size must be an even
multiple of the optimal I/O size for the disks in that subvolume. See the
section “Introduction to Logical Volumes” in Chapter 6 for more
information.

Reservation size (also known as the rate)
The reservation size is the amount of I/O that an application issues in a
single time quantum.

Application I/O size
The application I/O size is the size of the individual I/O requests that
an application issues. An application I/O size that equals the
reservation size is recommended, but not required(need to verify). The
reservation size must be an even multiple of the application I/O size,
and the application I/O size must be an even multiple of the optimal
I/O size.

The application is responsible for making sure that all I/O requests are issued within a
given time quantum, so that the system can provide the guaranteed data rate.

GRIO Guarantee Types

In addition to specifying the amount and duration of the reservation, the application
must specify the type of guarantee desired. There are five different classes of options that
need to be determined when obtaining a rate guarantee:

• The rate guarantee can be hard or soft.

• The rate guarantee can be made on a per-file or per-filesystem basis.

• The rate guarantee can be private or shared.

• The rate guarantee can be a fixed rotor, slip rotor, or non-rotor type.

• The rate guarantee can have deadline or real-time scheduling, or it can be
nonscheduled.

If the user does not specify any options, the rate guarantee has these options by default:
hard, shared, non-rotor options, and deadline scheduling. The per-file or per-filesystem
guarantee is determined by the libgrio calls to make the reservation: either the
grio_reserve_file() or grio_reserve_file_system() library calls.

GRIO Guarantee Types

179

Hard and Soft Guarantees

A hard guarantee means that the system does everything possible to make sure the
application receives the amount of data that has been reserved during each time
quantum. It also indicates that the hardware configuration of the system does not
interfere with the rate guarantees.

Hard guarantees are possible only when the disks that are used for the real-time
subvolume meet the requirements listed in the section “Hardware Configuration
Requirements for GRIO” in this chapter.

Because of the disk configuration requirements for hard guarantees (see the section
“Hardware Configuration Requirements for GRIO” in this chapter), incorrect data may
be returned to the application without an error notification, but the I/O requests return
within the guaranteed time. If an application requests a hard guarantee and some part of
the system configuration makes the granting of a hard guarantee impossible, the
reservation is rejected. The application can then issue a reservation request for a soft
guarantee.

A soft guarantee means that the system tries to achieve the desired rate, but there may be
circumstances beyond its control that prevent the I/O from taking place in a timely
manner. For example, if a non-real-time disk is on the same SCSI controller as real-time
disks and there is a disk data error on the non-real-time disk, the driver retries the request
to recover the data. This could cause the rate guarantee on the real-time disks to be
missed due to SCSI bus contention.

Per-File and Per-Filesystem Guarantees

A per-file guarantee indicates that the given rate guarantee can be used only on one
specific file. When a per-filesystem guarantee is obtained, the guarantee can be transferred
to any file on the given filesystem.

Private and Shared Guarantees

A private guarantee can be used only by the process that obtained the guarantee; it cannot
be transferred to another process. A shared guarantee can be transferred from one process
to another. Shared guarantees are only transferable; they cannot be used by both
processes at the same time.

180

Chapter 9: System Administration for Guaranteed-Rate I/O

Rotor and Non-Rotor Guarantees

The rotor type of guaranteed (either fixed or slip) is also known as a VOD (video on
demand) guarantee. It allows more streams to be supported per disk drive, but requires
that the application provide careful control of when and where I/O requests are issued.

Rotor guarantees are supported only when using a striped real-time subvolume. When
an application accesses a file, the accesses are time multiplexed among the drives in the
stripe. An application can only access a single disk during any one time quantum, and
consecutive accesses are assumed to be sequential. Therefore, the stripe unit must be set
to the number of kilobytes of data that the application needs to access per time quantum.
(The stripe unit is set using the xlv_make command when volume elements are created.)
If the application tries to access data on a different disk when it has a slip rotor guarantee,
the system attempts to change the process’s rotor slot so that it can access the desired
disk. If the application has a fixed rotor guarantee it is suspended until the appropriate
time quantum for accessing the given disk.

An application with a fixed rotor reservation that does not access a file sequentially, but
rather skips around in the file, has a performance impact. For example, if the real-time
subvolume is created on a four-way stripe, it could take as long as four (the size of the
volume stripe) times the time quantum for the first I/O request after a seek to complete.

Non-rotor guarantees do not have such restrictions. Applications with non-rotor
guarantees normally access the file in entire stripe size units, but can access smaller or
larger units without penalty as long as they are within the bounds of the rate guarantee.
The accesses to the file do not have to be sequential, but must be on stripe boundaries. If
an application tries to access the file more quickly than the guarantee allows, the actions
of the system are determined by the type of scheduling guarantee.

An Example Comparing Rotor and Non-Rotor Guarantees

Assume the system has eight disks, each supporting twenty-three 64 KB operations per
second. For non-rotor GRIO, if an application needs 512 KB of data each second, the eight
disks would be arranged in a eight-way stripe. The stripe unit would be 64 KB. Each
application read/write operation would be 512 KB and cause concurrent read/write
operations on each disk in the stripe. The application could access any part of the file at
any time, provided that the read/write operation always started at a stripe boundary.
This would provide 23 process streams with 512 KB of data each second.

GRIO Guarantee Types

181

With a non-rotor guarantee, the eight drives would be given an optimal I/O size of
512 KB. Each drive can support seven such operations each second. The higher rate
(7 x 512 KB versus 23 x 64 KB) is achievable because the larger transfer size does less
seeking. Again the drives would be arranged in an eight-way stripe but with a stripe unit
of 512 KB. Each drive can support seven 512K streams per second for a total of 8 * 7 = 56
streams. Each of the 56 streams is given a time period (also known as a time “bucket”).
There are eight different time periods with seven different processes in each period.
Therefore, 8 * 7 = 56 processes are accessing data in a given time unit. At any given
second, the processes in a single time period are allowed to access only a single disk.

Using a rotor guarantee more than doubles the number of streams that can be supported
with the same number of disks. The tradeoff is that the time tolerances are very stringent.
Each stream is required to issue the read/write operations within one time quantum. If
the process issues the call too late and real-time scheduling is used, the request blocks
until the next time period for that process on the disk. In this example, this could mean
a delay of up to eight seconds. In order to receive the rate guarantee, the application must
access the file sequentially. The time periods move sequentially down the stripe allowing
each process to access the next 512 KB of the file.

Real-Time Scheduling, Deadline Scheduling, and Nonscheduled
Reservations

Three types of reservation scheduling are possible: real-time scheduling, deadline
scheduling, and non-scheduled reservations.

Real-time scheduling means that an application receives a fixed amount of data in a fixed
length of time. The data can be returned at any time during the time quantum. This type
of reservation is used by applications that do only a small amount of buffering. If the
application requests more data than its rate guarantee, the system suspends the
application until it falls within the guaranteed bandwidth.

Deadline scheduling means that an application receives a minimum amount of data in a
fixed length of time. Such guarantees are used by applications that have a large amount
of buffer space. The application requests I/O at a rate at least as fast as the rate guarantee
and is suspended only when it is exceeding its rate guarantee and there is no additional
device bandwidth available.

182

Chapter 9: System Administration for Guaranteed-Rate I/O

Nonscheduled reservations means that the guarantee received by the application is only
a reservation of system bandwidth. The system does not enforce the reservation limits
and therefore cannot guarantee the I/O rate of any of the guarantees on the system.
Nonscheduled reservations should be used with extreme care.

GRIO System Components

Several components make up the GRIO mechanism: a system daemon, support
commands, configuration files, and an application library.

The system daemon is ggd. It is started from the script /etc/rc2.d/S94grio when the system
is started. It is always started; unlike some other daemons, it is not turned on and off with
the chkconfig command. A lock file is created in the /tmp directory to prevent two copies
of the daemon from running simultaneously. Requests for rate guarantees are made to
the ggd daemon. The daemon reads the GRIO configuration files /etc/grio_config and
/etc/grio_disks.

/etc/grio_config describes the various I/O hardware paths on the system, starting with the
system bus and ending with the individual peripherals such as disk and tape drives. It
also describes the bandwidth capabilities of each component. The format of this file is
described in the section “/etc/grio_config File Format” in this chapter. If you want a soft
rate guarantee, you must edit this file. See step 10 in the section “Configuring a System
for GRIO” in this chapter for more information.

/etc/grio_disks describes the performance characteristics for the types of disk drives that
are supported on the system, including how many I/O operations of each size (64K,
128K, 256K, or 512K bytes) can be executed by each piece of hardware in one second. You
can edit the file to add support for new drive types. The format of this file is described in
the section “/etc/grio_disks File Format” in this chapter.

The cfg command is used to automatically generate an /etc/grio_config configuration file
for a system’s configuration. It scans the hardware in the system, the XLV volumes, and
the information in the /etc/grio_disks file so that it can generate a performance tree, which
is put into /etc/grio_config, for use by the ggd daemon. This performance tree is based on
an optimal I/O size specified as an option to the cfg command. A checksum is included
at the end of /etc/grio_config by cfg. When the ggd daemon reads the configuration
information, it validates the checksum. You can also edit /etc/grio_config to tune the
performance characteristics to fit a given application and tell ggd to ignore the checksum.
See the section “Modifying /etc/grio_config” in this chapter for more information.

Hardware Configuration Requirements for GRIO

183

The /usr/lib/libgrio.so libraries contain a collection of routines that enable an application
to establish a GRIO session. The library routines are the only way in which an application
program can communicate with the ggd daemon. The library also includes a library
routine that applications can use to check the amount of bandwidth available on a
filesystem. This enables them to quickly get an idea of whether or not a particular
reservation might be granted—more quickly than actually making the request.

Hardware Configuration Requirements for GRIO

Guaranteed-rate I/O requires the hardware to be configured so that it follows these
guidelines:

• Put only real-time subvolume volume elements on a single disk (not log or data
subvolume volume elements). This configuration is recommended for soft
guarantees and required for hard guarantees.

• The drive firmware in each disk used in the real-time subvolume must have the
predictive failure analysis and thermal recalibration features disabled. All disk
drives have been shipped from Silicon Graphics this way since March 1994.

• When possible, disks used in the real-time subvolume of an XLV volume should
have the RC (read continuous) bit enabled. (The RC bit is a disk drive parameter
that is discussed in more detail later in this section.) This allows the disks to
perform faster, but at the penalty of occasionally returning incorrect data (without
giving an error).

• Disks used in the data and log subvolumes of the XLV logical volume must have
their retry mechanisms enabled. The data and log subvolumes contain information
critical to the filesystem and cannot afford an occasional disk error.

For GRIO with hard guarantees, these additional hardware configuration requirements
must be met:

• Each disk used for hard guarantees must be on a controller whose disks are used
exclusively for real-time subvolumes. These controllers cannot have any devices
other than disks on their buses. Any other devices could prevent the disk from
accessing the SCSI bus in a timely manner and cause the rate to be missed.

184

Chapter 9: System Administration for Guaranteed-Rate I/O

• For hard guarantees, the disk drive retry and error correction mechanisms must be
disabled for all disks that are part of the real-time subvolume. (Disk drive retry and
error correction mechanisms are controlled by drive parameters that are discussed
in more detail below.) When the drive does error recovery, its performance degrades
and there can be lengthy delays in completing I/O requests. However, when the
drive error recovery mechanisms are disabled, occasionally invalid data is returned
to the user without an error indication. Because of this, the integrity of data stored
on an XLV real-time subvolume is not guaranteed when drive error recovery
mechanisms are disabled.

As described in this section, in some situations, disk drive parameters must be altered on
some disks used for GRIO. Table 9-1 shows the disk drive parameters that may need to
be changed.

Setting disk drive parameters can be performed on approved disk drive types only. You
can use the fx command to find out the type of a disk drive. fx reports the disk drive type
after the controller test on a line that begins with the words “Scsi drive type.” The
approved disk drives types whose parameters can be set for real-time operation are
shown in Table 9-2.

The procedure for enabling the RC bit and disabling the disk drive retry and error
correction mechanisms is described in the section “Disabling Disk Error Recovery” in
this chapter.

Table 9-1 Disk Drive Parameters for GRIO

Parameter New Setting

Auto bad block reallocation (read) Disabled

Auto bad block reallocation (write) Disabled

Delay for error recovery (disabling this parameter
enables the read continuous (RC) bit)

Disabled

Table 9-2 Disk Drives Whose Parameters Can Be Changed

Disk Drive Types Approved for Changing Disk Parameters

SGI 0664N1D 6s61

SGI 0664N1D 4I4I

Configuring a System for GRIO

185

Configuring a System for GRIO

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

This section describes how to configure a system for GRIO: create an XLV logical volume
with a real-time subvolume, make a filesystem on the volume and mount it, and
configure and restart the ggd daemon.

1. Choose disk partitions for the XLV logical volume and confirm the hardware
configuration as described in the section “Hardware Configuration Requirements
for GRIO” in this chapter. This includes modifying the disk drive parameters as
described in the section “Disabling Disk Error Recovery” in this chapter.

2. Determine the values of variables used while constructing the XLV logical volume:

vol_name The name of the volume with a real-time subvolume.

rate The rate at which applications using this volume access the data. rate
is the number of bytes per time quantum per stream (the rate)
divided by 1K. This information may be available in published
information about the applications or from the developers of the
applications.

num_disks The number of disks included in the real-time subvolume of the
volume.

stripe_unit When the real-time disks are striped (required for Video on Demand
and recommended otherwise), this is the amount of data written to
one disk before writing to the next. It is expressed in 512-byte
sectors.

For non-rotor guarantees:

stripe_unit = rate * 1K / (num_disks * 512)

For rotor guarantees:

stripe_unit = rate * 1K / 512

extent_size The filesystem extent size.

For non-rotor guarantees:

extent_size = rate * 1K

186

Chapter 9: System Administration for Guaranteed-Rate I/O

For rotor guarantees:

extent_size = rate * 1K * num_disks

opt_IO_size The optimal I/O size. It is expressed in kilobytes. By default, the
possible values for opt_IO_size are 64 (64K bytes), 128 (128K bytes),
256 (256K bytes), and 512 (512K bytes). Other values can be added
by editing the /etc/grio_disks file (see the section “/etc/grio_disks
File Format” in this chapter for more information).

For non-rotor guarantees, opt_IO_size must be an even factor of
stripe_unit, but not less than 64.

For rotor guarantees opt_IO_size must be an even factor of rate.
Setting opt_IO_size equal to rate is recommended.

Table 9-3 gives examples for the values of these variables.

3. Create an xlv_make script file that creates the XLV logical volume. (See the section
“Creating Volume Objects With xlv_make” in Chapter 7 for more information.)
Example 9-1 shows an example script file for a volume.

Table 9-3 Examples of Values of Variables Used in Constructing an XLV Logical Volume
Used for GRIO

Variable Type of Guarantee Comment Example

Value

vol_name any This name matches the last component of
the device name for the volume,
/dev/dsk/xlv/vol_name

xlv_grio

rate any For this example, assume 512 KB per
second per stream

512

num_disks any For this example, assume 4 disks 4

stripe_unit non-rotor 512*1K/(4*512) 256

rotor 512*1K/512 1024

extent_size non-rotor 512 * 1K 512k

rotor 512 * 1K * 4 2048k

opt_IO_size non-rotor 128/1 = 128 or 128/2 = 64 are possible 64

rotor Same as rate 512

Configuring a System for GRIO

187

Example 9-1 Configuration File for a Volume Used for GRIO

Configuration file for logical volume vol_name. In this
example, data and log subvolumes are partitions 0 and 1 of

the disk at unit 1 of controller 1. The real-time

subvolume is partition 0 of the disks at units 1-4 of

controller 2.

#

vol vol_name
data

plex

ve dks1d1s0

log

plex

ve dks1d1s1

rt

plex

ve -stripe -stripe_unit stripe_unit dks2d1s0 dks2d2s0 dks2d3s0 dks2d4s0
show

end

exit

4. Run xlv_make to create the volume:

xlv_make script_file

script_file is the xlv_make script file you created in step 3.

5. Create the filesystem by giving this command:

mkfs -r extsize=extent_size /dev/dsk/xlv/vol_name

6. To mount the filesystem immediately, give these commands:

mkdir mountdir
mount /dev/dsk/xlv/vol_name mountdir

mountdir is the full pathname of the directory that is the mount point for the
filesystem.

7. To configure the system so that the new filesystem is automatically mounted when
the system is booted, add this line to /etc/fstab:

/dev/dsk/xlv/vol_name mountdir xfs rw,raw=/dev/rdsk/xlv/vol_name 0 0

8. If the file /etc/grio_config exists, and you see OPTSZ=65536 for each device and
OPTSZ=524288(check this) for disks in the real-time subvolume, skip to step 10.

188

Chapter 9: System Administration for Guaranteed-Rate I/O

9. Create the file /etc/grio_config with this command:

cfg -d opt_IO_size

10. If you want soft rate guarantees, edit /etc/grio_config and remove this string:

RT=1

from the lines for disks where software retry is required (see the section
“/etc/grio_config File Format” in this chapter for more information).

11. Restart the ggd daemon:

/etc/init.d/grio stop

/etc/init.d/grio start

Now the user application can be started. Files created on the real-time subvolume
volume can be accessed using guaranteed-rate I/O.

Additional Procedures for GRIO

The following subsections describe additional special-purpose procedures for
configuring disks and GRIO system components.

Disabling Disk Error Recovery

As described in the section “Hardware Configuration Requirements for GRIO” in this
chapter, disks in XLV logical volumes used by GRIO applications may have to have their
parameters modified.

Caution: Setting disk drive parameters must be performed correctly on approved disk
drive types only. Performing the procedure incorrectly, or performing it on an
unapproved type of disk drive could severely damage the disk drive. Setting disk drive
parameters should be performed only by experienced system administrators.

The procedure for setting disk drive parameters is shown below. In this example all of
the parameters shown in Table 9-1 are changed for a disk on controller 131 at drive
address 1.

1. Start fx in expert mode:

fx -x

fx version 6.2, Oct 10, 1995

Additional Procedures for GRIO

189

2. Specify the disk whose parameters you want to change by answering the prompts:

fx: "device-name" = (dksc) <Enter>

fx: ctlr# = (0) 131

fx: drive# = (1) 1

fx: lun# = (0)

...opening dksc(131,1,0)

...controller test...OK

3. Confirm that the disk drive is one of the approved types listed in Table 9-2 by
comparing the next line of output to the table.

Scsi drive type == SGI 0664N1D 6s61

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/

[b]adblock/ [exe]rcise/ [r]epartition/

4. Show the current settings of the disk drive parameters (this command uses the
shortcut of separating commands on a series of hierarchical menus with slashes):

fx > label/show/parameters

----- current drive parameters-----

Error correction enabled Enable data transfer on error

Don't report recovered errors Do delay for error recovery

Don't transfer bad blocks Error retry attempts 10

Do auto bad block reallocation (read)

Do auto bad block reallocation (write)

Drive readahead enabled Drive buffered writes disabled

Drive disable prefetch 65535 Drive minimum prefetch 0

Drive maximum prefetch 65535 Drive prefetch ceiling 65535

Number of cache segments 4

Read buffer ratio 0/256 Write buffer ratio 0/256

Command Tag Queueing disabled

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/

[b]adblock/ [exe]rcise/ [r]epartition/

The parameters in Table 9-1 correspond to “Do auto bad block reallocation (read),”
“Do auto bad block reallocation (write),” and “Do delay for error recovery,” in that
order. Each of them is currently enabled.

190

Chapter 9: System Administration for Guaranteed-Rate I/O

5. Give the command to start setting disk drive parameters and press <Enter> until
you reach a parameter that you want to change:

fx> label/set/parameters

fx/label/set/parameters: Error correction = (enabled) <Enter>

fx/label/set/parameters: Data transfer on error = (enabled) <Enter>

fx/label/set/parameters: Report recovered errors = (disabled) <Enter>

6. To change the delay for error recovery parameter to disabled, enter “disable” the
prompt:

fx/label/set/parameters: Delay for error recovery = (enabled) disable

7. Press <Enter> through other parameters that don’t need changing:

fx/label/set/parameters: Err retry count = (10) <Enter>

fx/label/set/parameters: Transfer of bad data blocks = (disabled) <Enter>

8. To change the auto bad block reallocation parameters, enter “disable” at their
prompts:

fx/label/set/parameters: Auto bad block reallocation (write) = (enabled) disable

fx/label/set/parameters: Auto bad block reallocation (read) = (enabled) disable

9. Press <Enter> through the rest of the parameters:

fx/label/set/parameters: Read ahead caching = (enabled) <Enter>

fx/label/set/parameters: Write buffering = (disabled) <Enter>

fx/label/set/parameters: Drive disable prefetch = (65535) <Enter>

fx/label/set/parameters: Drive minimum prefetch = (0) <Enter>

fx/label/set/parameters: Drive maximum prefetch = (65535) <Enter>

fx/label/set/parameters: Drive prefetch ceiling = (65535) <Enter>

fx/label/set/parameters: Number of cache segments = (4) <Enter>

fx/label/set/parameters: Enable CTQ = (disabled) <Enter>

fx/label/set/parameters: Read buffer ratio = (0/256) <Enter>

fx/label/set/parameters: Write buffer ratio = (0/256) <Enter>

10. Confirm that you want to make the changes to the disk drive parameters by
entering “yes” to this question and start exiting fx:

 * * * * * W A R N I N G * * * * *

about to modify drive parameters on disk dksc(131,1,0)! ok? yes

----- please choose one (? for help, .. to quit this menu)-----

[exi]t [d]ebug/ [l]abel/ [a]uto

[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat

fx> exit

Additional Procedures for GRIO

191

11. Confirm again that you want to make the changes to the disk drive parameters by
pressing <Enter> in response to this question:

label info has changed for disk dksc(131,1,0). write out changes? (yes) <Enter>

Restarting the ggd Daemon

After any of the files /etc/grio_disks, /etc/grio_config, or /etc/config/ggd.options are modified,
ggd must be restarted to make the changes take effect. Give these commands to restart
ggd:

/etc/init.d/grio stop

/etc/init.d/grio start

When ggd is restarted, current rate guarantees are lost.

Modifying /etc/grio_config

You can edit /etc/grio_config to tune the performance characteristics to fit a given
application. Follow this procedure to make the changes:

1. Using the information in the section “/etc/grio_config File Format” in this chapter,
edit /etc/grio_config as desired.

2. Create or modify the file /etc/config/ggd.options and add -d. This option tells ggd to
ignore the file checksum in /etc/grio_config; the checksum is no longer correct
because of the editing in step 1. See the section “/etc/config/ggd.options File
Format” in this chapter for more information.

3. Restart the ggd daemon. See the section “Restarting the ggd Daemon” in this
chapter for directions.

192

Chapter 9: System Administration for Guaranteed-Rate I/O

Running ggd as a Real-time Process

Running ggd as a real-time process dedicates one or more CPUs to performing GRIO
requests exclusively. Follow this procedure on a multiprocessor system to run ggd as a
real-time process:

1. Create or modify the file /etc/config/ggd.options and add -c cpunum to the file. cpunum
is the number of a processor to be dedicated to GRIO. This causes the CPU to be
marked isolated, restricted to running selected processes, and nonpreemptive.
Processes using GRIO should mark their processes as real-time and runable only on
CPU cpunum. The sysmp(2) reference page explains how to do this.

2. Restart the ggd daemon. See the section “Restarting the ggd Daemon” in this
chapter for directions.

3. After ggd has been restarted, you can confirm that the CPU has been marked by
giving this command (cpunum is 3 in this example):

mpadmin -s

processors: 0 1 2 3 4 5 6 7

unrestricted: 0 1 2 5 6 7

isolated: 3

restricted: 3

preemptive: 0 1 2 4 5 6 7

clock: 0

fast clock: 0

4. To mark an additional CPU for real-time processes after ggd has been restarted, give
these commands:

mpadmin -rcpunum2
mpadmin -Icpunum2
mpadmin -Ccpunum2

GRIO File Formats

The following subsections contain reference information about the contents of the three
GRIO configuration files, /etc/grio_config, /etc/grio_disks, and /etc/config/ggd.options.

GRIO File Formats

193

/etc/grio_config File Format

The /etc/grio_config file describes the configuration of the system I/O devices. The cfg
command generates /etc/grio_config, based on an optimal I/O size specified on the
command cfg line. cfg scans the hardware in the system, the XLV volumes, and the
information in the /etc/grio_disks to create /etc/grio_config. You can also edit /etc/grio_config
to tune the performance characteristics to fit a given application. Changes to
/etc/grio_config do not take effect until the ggd daemon is restarted (see the section
“Restarting the ggd Daemon” in this chapter).

The information in /etc/grio_config is used by the ggd daemon to construct a tree that
describes the relationships between the components of the I/O system and their
bandwidths. In order to grant a rate guarantee on a disk device, the ggd daemon checks
that each component in the I/O path from the system bus to the disk device has sufficient
available bandwidth.

There are two basic types of records in /etc/grio_config: component records and
relationship records. Each record occupies a single line in the file. Component records
describe the I/O attributes for a single component in the I/O subsystem. CPU and
memory components are described in the file, as well, but do not currently affect the
granting or refusal of a rate guarantee.

The format of component records is:

componentname= parameter=value parameter=value ... (descriptive text)

componentname is a text string that identifies a single piece of hardware present in the
system. Some componentnames are:

SYSTEM The machine itself. There is always one SYSTEM component.

CPUn A CPU board in slot n. It is attached to SYSTEM.

MEMn A memory board in slot n. It is attached to SYSTEM.

IOBn An I/O board with n as its internal location identifier. It is attached to
SYSTEM.

IOAnm An I/O adaptor. It is attached to IOBn at location m.

CTRn SCSI controller number n. It is attached to an I/O adapter.

DSKnUm Disk device m attached to SCSI controller n.

194

Chapter 9: System Administration for Guaranteed-Rate I/O

parameter can be one of the following:

OPTSZ The optimal I/O size of the component

NUM The number of OPTSZ I/O requests supported by the component each
second

SLOT The backplane slot number where the component is located, if
applicable (not used on all systems)

VER The CPU type of system (for example, IP22, IP19, and so on; not used on
all systems)

NUMCPUS The number of CPUs attached to the component (valid only for CPU
components; not used on all systems)

MHZ The MHz value of the CPU (valid only for CPU components; not used
on all systems)

CTLRNUM The SCSI controller number of the component

UNIT The drive address of the component

RT Set to 1 if the disk is in a real-time subvolume (remove this parameter for
soft guarantees)

RPOS Determines the disk’s position in the striped subvolume

The value is the integer or text string value assigned to the parameter. The string enclosed
in parentheses at the end of the line describes the component.

Some examples of component records taken from /etc/grio_config on an Indy system are
shown below. Each record is a single line, even if it is shown on multiple lines here.

• SYSTEM= OPTSZ=65536 NUM=5000 (IP22)

The componentname SYSTEM refers to the system bus. It supports five thousand 64
KB operations per second.

• CPU= OPTSZ=65536 NUM=5000 SLOT= 0 VER=IP22 NUMCPUS=1 MHZ=100

This describes a 100 MHz CPU board in slot 0. It supports five thousand 64 KB
operations per second.

• CTR0= OPTSZ=65536 NUM=100 CTLRNUM=0 (WD33C93B,D)

This describes SCSI controller 0. It supports one hundred 64 KB operations per
second.

GRIO File Formats

195

• DSK0U0= OPTSZ=65536 NUM=23 CTLRNUM=0 UNIT=1 (SGI SEAGATE

ST31200N9278)

This describes a SCSI disk attached to SCSI controller 0 at drive address 1. It
supports twenty-three 64 KB operations per second.

Relationship records describe the relationships between the components in the I/O
system. The format of relationship records is:

component: attached_component1 attached_component2 ...

These records indicate that if a guarantee is requested on attached_component1, the ggd
daemon must determine if component also has the necessary bandwidth available. This is
performed recursively until the SYSTEM component is reached.

Some examples of relationship records taken from /etc/grio_config on an Indy system are:

• SYSTEM: CPU

This describes the CPU board as being attached to the system bus.

• CTR0: DSK0U1

This describes the SCSI disk at drive address 1 being attached to SCSI controller 0.

196

Chapter 9: System Administration for Guaranteed-Rate I/O

/etc/grio_disks File Format

The file /etc/grio_disks contains information that describes I/O bandwidth parameters of
the various types of disk drives that can be used on the system.

By default, /etc/grio_disks contains the parameters for disks supported by Silicon
Graphics for optimal I/O sizes of 64K, 128K, 256K, and 512K. Table 9-4 lists these disks.
Table 9-5 shows the optimal I/O sizes and the number of optimal I/O size requests each
of the disks listed in Table 9-4 can handle in one second.

Table 9-4 Disks in /etc/grio_disks by Default

Disk ID String

"SGI IBM DFHSS2E 1111"

"SGI SEAGATE ST31200N8640"

"SGI SEAGATE ST31200N9278"

"SGI 066N1D 4I4I"

"SGI 0064N1D 4I4I"

"SGI 0664N1D 4I4I"

"SGI 0664N1D 6S61"

"SGI 0664N1D 6s61"

"SGI 0664N1H 6s61"

"IBM OEM 0663E15 eSfS"

"IMPRIMIS94601-15 1250"

"SEAGATE ST4767 2590"

Table 9-5 Optimal I/O Sizes and the Number of Requests per Second Supported

Optimal I/O Size Number of Requests per Second

65536 23

131072 16

GRIO File Formats

197

To add other disks or to specify a different optimal I/O size, you must add information
to the /etc/grio_disks file. If you modify /etc/grio_disks, you must rerun the cfg command to
re-create /etc/grio_config and then restart the ggd daemon for the changes to take effect
(see the section “Restarting the ggd Daemon” in this chapter).

The records in /etc/grio_disks are in these two forms:

ADD "disk id string" optimal_iosize number_optio_per_second

SETSIZE device optal_iosize

If the first field is the keyword ADD, the next field is a 28-character string that is the drive
manufacturer’s disk ID string. The next field is an integer denoting the optimal I/O size
of the device in bytes. The last field is an integer denoting the number of optimal I/O size
requests that the disk can satisfy in one second.

Some examples of these records are:

ADD “SGI SEAGATE ST31200N9278” 64K 23

ADD “SGI 0064N1D 4I4I” 50K 25

If the first field is the keyword SETSIZE, the next field is the pathname of a disk device.
The third field is an integer denoting the optimal I/O size to be used on the device.

Normally, the optimal I/O size of a disk device is determined by its stripe unit size. If the
disk is not striped or you do not want to use the stripe unit size for the optimal I/O size,
you can use the SETSIZE command to tell the cfg command how to construct the lines for
the GRIO disk in the /etc/grio_config file.

An example of a SETSIZE record is:

SETSIZE /dev/rdsk/dks136d1s0 50K

262144 9

524288 5

Table 9-5 (continued) Optimal I/O Sizes and the Number of Requests per Second Supported

Optimal I/O Size Number of Requests per Second

198

Chapter 9: System Administration for Guaranteed-Rate I/O

/etc/config/ggd.options File Format

/etc/config/ggd.options contains command-line options for the ggd daemon. Options you
might include in this file are:

-d Do not use the checksum at the end of /etc/grio_config. This is option is
required when /etc/grio_config has been modified to tune performance
for an application.

-c cpunum Dedicate CPU cpunum to performing GRIO requests exclusively.

If you change this file, you must restart ggd to have your changes take effect. See the
section “Restarting the ggd Daemon” in this chapter for more information.

